Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Microbiol Spectr ; 11(3): e0001023, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2290470

ABSTRACT

Obesity is a risk factor for severe disease and mortality for both influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. While previous studies show that individuals with obesity generate antibody responses following influenza vaccination, infection rates within the obese group were twice as high as those in the healthy-weight group. The repertoire of antibodies raised against influenza viruses following previous vaccinations and/or natural exposures is referred to here as baseline immune history (BIH). To investigate the hypothesis that obesity impacts immune memory to infections and vaccines, we profiled the BIH of obese and healthy-weight adults vaccinated with the 2010-2011 seasonal influenza vaccine in response to conformational and linear antigens. Despite the extensive heterogeneity of the BIH profiles in both groups, there were striking differences between obese and healthy subjects, especially with regard to A/H1N1 strains and the 2009 pandemic virus (Cal09). Individuals with obesity had lower IgG and IgA magnitude and breadth for a panel of A/H1N1 whole viruses and hemagglutinin proteins from 1933 to 2009 but increased IgG magnitude and breadth for linear peptides from the Cal09 H1 and N1 proteins. Age was also associated with A/H1N1 BIH, with young individuals with obesity being more likely to have reduced A/H1N1 BIH. We found that individuals with low IgG BIH had significantly lower neutralizing antibody titers than individuals with high IgG BIH. Taken together, our findings suggest that increased susceptibility of obese participants to influenza infection may be mediated in part by obesity-associated differences in the memory B-cell repertoire, which cannot be ameliorated by current seasonal vaccination regimens. Overall, these data have vital implications for the next generation of influenza virus and SARS-CoV-2 vaccines. IMPORTANCE Obesity is associated with increased morbidity and mortality from influenza and SARS-CoV-2 infection. While vaccination is the most effective strategy for preventing influenza virus infection, our previous studies showed that influenza vaccines fail to provide optimal protection in obese individuals despite reaching canonical correlates of protection. Here, we show that obesity may impair immune history in humans and cannot be overcome by seasonal vaccination, especially in younger individuals with decreased lifetime exposure to infections and seasonal vaccines. Low baseline immune history is associated with decreased protective antibody responses. Obesity potentially handicaps overall responses to vaccination, biasing it toward responses to linear epitopes, which may reduce protective capacity. Taken together, our data suggest that young obese individuals are at an increased risk of reduced protection by vaccination, likely due to altered immune history biased toward nonprotective antibody responses. Given the worldwide obesity epidemic coupled with seasonal respiratory virus infections and the inevitable next pandemic, it is imperative that we understand and improve vaccine efficacy in this high-risk population. The design, development, and usage of vaccines for and in obese individuals may need critical evaluation, and immune history should be considered an alternate correlate of protection in future vaccine clinical trials.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , COVID-19 Vaccines , SARS-CoV-2 , Influenza, Human/prevention & control , Antibodies, Viral , Obesity , Immunoglobulin G
2.
Pediatr Pulmonol ; 55(10): 2592-2595, 2020 10.
Article in English | MEDLINE | ID: covidwho-697159

ABSTRACT

Pediatric pulmonologists have been involved in the care of adult COVID-19 patients in a variety of ways, particularly in areas with a high concentration of cases. This invited commentary is a series of questions to Dr Mikhail Kazachkov, a pediatric pulmonologist at New York University, about his experiences to date in a major COVID-19 "hotspot" and his thoughts about how other pediatric pulmonologists facing this situation can best support their colleagues.


Subject(s)
COVID-19/therapy , Pandemics , Pediatrics , Professional Role , Pulmonologists , SARS-CoV-2 , Adult , COVID-19/epidemiology , Child , Emotions , Hospitals, Pediatric , Humans , Infection Control , Patient Care Team , Pulmonary Medicine , Pulmonologists/psychology
3.
Pediatr Pulmonol ; 55(8): 1859-1867, 2020 08.
Article in English | MEDLINE | ID: covidwho-597152

ABSTRACT

Unprecedented opportunities and daunting difficulties are anticipated in the future of pediatric pulmonary medicine. To address these issues and optimize pediatric pulmonary training, a group of faculty from various institutions met in 2019 and proposed specific, long-term solutions to the emerging problems in the field. Input on these ideas was then solicited more broadly from faculty with relevant expertise and from recent trainees. This proposal is a synthesis of these ideas. Pediatric pulmonology was among the first pediatric specialties to be grounded deliberately in science, requiring its fellows to demonstrate expertise in scientific inquiry (1). In the future, we will need more training in science, not less. Specifically, the scope of scientific inquiry will need to be broader. The proposal outlined below is designed to help optimize the practices of current providers and to prepare the next generation to be leaders in pediatric care in the future. We are optimistic that this can be accomplished. Our broad objectives are (a) to meet the pediatric subspecialty workforce demand by increasing interest and participation in pediatric pulmonary training; (b) to modernize training to ensure that future pediatric pulmonologists will be prepared clinically and scientifically for the future of the field; (c) to train pediatric pulmonologists who will add value in the future of pediatric healthcare, complemented by advanced practice providers and artificial intelligence systems that are well-informed to optimize quality healthcare delivery; and (d) to decrease the cost and improve the quality of care provided to children with respiratory diseases.


Subject(s)
Pediatrics , Pulmonary Medicine , Artificial Intelligence , Child , Delivery of Health Care , Health Workforce , Humans , Pediatrics/education , Pulmonary Medicine/education
SELECTION OF CITATIONS
SEARCH DETAIL